Absolute VUV Radiometry with Silicon Photodiodes

Jeff Keister SFA, Inc. 5/17/2006

X8a / U3c Radiometry Beamlines

- 50-6500 eV photons
 - 95-99% harmonic purity
 - 1-100 μW/cm² typical flux (~1 mm typical spot size)
 - Turbo-pumped high vacuum endstations
 - detector positioning automation
- Silicon diodes as calibration standards
 - "Self-calibration" method used
 - Verification performed with photoemission detectors, calibration at other light sources
 - Useful for other scientific applications?

Ionization Detector

$$S = \frac{1}{w} e^{-t_{window}/\lambda_{window}} \left(1 - e^{-L_{active}/\lambda_{active}} \right)$$

Requirements:

- Known window absorption & thickness
- Known active length absorption & length
- Known mean ionization energy
- Ionizable insulator medium
- Unobstructed path for photo-injected charge carriers to reach collection electrodes

Silicon Photodiode (PD)

depletion region (effectively intrinsic / undoped)

- Made of highly pure, crystalline silicon
- Mean pair production energy
 (w) for silicon = 3.66 ± 0.03 eV
- Diode can be made to be selfdepleting (full depletion without bias) to 50 μm, maybe more
- Low dark current (reverse leakage) at zero bias (< 1 pA), otherwise reverse current is proportional to number of photo-injected charge carriers ("photoconductive current mode")
- Bandgap = 1.14 eV (1.10 μm)

The IRD PD

- N-on-P construction
- AXUV-G product has a thin (~5-7 nm) oxide window layer for maximum QE in the UV/EUV (oxynitride): "windowless" at 1 keV
- Standard active layer thickness is 25 µm
- In SXUV product, the oxide is replaced with silicide. PtSi, TiSi, and TaSi window layers are available upon request (PtSi is standard; nitric oxide ambient during processing essentially means TiSi = TiSiN) – this product is purportedly designed to mitigate damage due to radiation and moisture (oxidation, contamination) seen in SR applications
- Shunt resistance is variable from device to device (2 $M\Omega$ 2 $G\Omega$) and must be specified & tested

Other vendors include:

- Hamamatsu
- Perkin-Elmer

The IRD PD

PD I-V curves (dark)

Importance of Shunt Resistance

Table 2-9. Minimum Recommended Source Resistance Values in Amps

K617

Range	Minimum Source Resistance
All pA	100GΩ
All nA	100ΜΩ
All μA	100 kΩ
All mA	100 Ω

Table 4-2
Minimum recommended source resistance values

K6514

Range	Minimum Recommended Source Resistance
pA	1GΩ to 100GΩ
nA	1M $Ω$ to 100 M $Ω$
μA	1 k Ω to 100 k Ω
mA	1Ω to 100Ω

Table 2-10
Minimum recommended source resistance values

K6517A

Range	Minimum recommended source resistance
pA	1 GΩ to 100 GΩ
nA	$1~\mathrm{M}\Omega$ to $100~\mathrm{M}\Omega$
μΑ	1 kΩ to 100 kΩ
mA	1 Ω to 100 Ω

- Low shunt resistance makes the [dark] current depend on small ambient potentials
- Ammeter autoranging is slow when shunt resistance is low (10 s)
- Response time goes like RC for the PD:

$$R_{sh}$$
 = shunt resistance
 $C = 1e-10 * A_{active}/t_{active} (\kappa \sim 12)$
 $R_{sh}C = 400 \text{ ms for } 10x10 \text{ mm},$
 $25 \text{ } \mu\text{m} @ 1 \text{ } G\Omega$

PD Shunt Resistance vs. dark current

- Can't use dark current as reliable measure of performance UNLESS shunt resistance is 200 M or greater (1 pA accuracy target)
- Lower R_{sh} values give unpredictable results with newly calibrated ammeters of various type

Typical PD Response

Self-Calibration

$$S(\phi) = \frac{1}{w} \left\{ e^{-\frac{1}{\cos(\phi)} \left(\frac{t_{do}}{\lambda_{SiO2}} + \frac{t_{dc}}{\lambda_C} + \frac{t_{ds}}{\lambda_{Si}} \right)} \left[1 - e^{-\left(\frac{1}{\cos(\phi)} \cdot \frac{t_s}{\lambda_{Si}} \right) / \left(\frac{1}{\cos(\phi)} \cdot \frac{L}{\lambda_{Si}} + 1 \right)} \right] + ss \cdot \left\{ e^{-\frac{1}{\cos(\phi)} \left[\frac{t_{dc}}{\lambda_C} + \frac{t_{do}}{\lambda_{SiO2}} \right]} \right\} \cdot \left\{ 1 - e^{-\frac{1}{\cos(\phi)} \cdot \frac{t_s}{\lambda_{Si}}} \right\} \right\}$$

S = photodiode responsivity

w = mean electron-hole pair production energy

 t_{do} = thickness of the silicon dioxide window (dead) layer

 t_{dc} = thickness of carbon (dead layer) on the window t_{ds} = thickness of undoped (or inadequately biased, dead layer) silicon contributing to the window layer $t_{\rm s}$ = effective active layer thickness

L = characteristic diffusion length (for photoelectrons released in the back region of the diode)

ss = probability that a hole created in the silicon dead layer will migrate into the active region

 λ_{SiO2} , λ_C , λ_{Si} = x-ray attenuation lengths in silicon dioxide, carbon, and bulk silicon, respectively

$$A_{60} = \frac{S(60^{\circ})}{S(0^{\circ})}$$

- Ratio response (i b signal salled).
 All parameters but w are determined by this method
 Relies on known optical constants Ratio response (PD signal current) at two incidence angles

A₆₀ data and model

AXUV-100G 02-5 #20 RMS fit error: 2.5%

max error: 1.5 %

Model parameters:

 $t_{do} = 5 \pm 1 \text{ nm}$ $t_{dc} = 2 \pm 1 \text{ nm}$

Optical constants from:

- CXRO database (http://www.cxro.lbl.gov/optical_constants/sf/sf.tar.gz)
- For SiO₂, CXRO elemental data is taken in stoichiometric ratios above 150 eV
- For SiO₂, Below 150 eV, data is used from Rife et al. (Rife, Osantowski, JOSA 70(12) 1513-1518)

A₆₀ model with typical parameters

Reflectivity Limitation

- Reflectivity of silicon at low E reduces absorption at 60 degrees
- To maintain 1% accuracy self-calibration is limited to energies ≥ 50 eV

Application of PD Response Curve

$$S_d(meas) = I_d \cdot \frac{S_{\circ}}{I_{\circ}}$$

Application Concerns

- Energy calibration
- Energy resolution
- Harmonic Content

Silicon PD and Photon Rate

VUV damage

- Not well understood
 - Role of Carbon?
 - Oxidation?
 - Silicon damage / restructuring?
- Exposure limits (~1 year at the beamline?)
- R_{sh} related?
- Self repair?
- Localized affect on responsivity?

White Light Damage Study

- 4 year (normal operations) equivalent dose in 5 minutes
 - exposure to zero-order beam at beamline U3c
 - 700 µA signal seen during exposure
- Shunt Resistance
 - Initially 19.3 M Ω
 - Finally 17.1 M Ω
- No repair seen after heating to 100 °C

Damage Study Data

Damage Observations

- Shunt resistance may be affected
- Silicon appears to play the major role
- No repair behavior seen

More detailed work desired

Conclusions

- Si PD is very useful in VUV range, and can be calibrated with minimal effort
 - Chamber must be light tight
 - Use calibration data with care near material edges
 - Photon-counting applications can use PD crosscalibration near the MHz rate
- Important device characteristics are
 - Shunt Resistance
 - Active layer thickness
 - Window thickness / composition
- Diodes don't last forever